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OBSERVATIONS O F  INTERNAL OXIDATION I N  SIX NICKEEBASE ALLOY SYSTEMS 

by James S. Wolf, John W. Weeton, and John C. Freche 

Lewis Research Center 

SUMMARY 

An i n t e r n a l  oxidation invest igat ion was conducted with a s e r i e s  of so l id  
solut ion nickel-base binary a l loys  (n icke l  ( N i )  with aluminum (a), magnesium 
(Mg) ,  s i l i c o n  (S i ) ,  t i tanium ( T i ) ,  chromium (Cr), and manganese (Mn)). These 
systems were studied t o  determine t h e i r  po ten t ia l s  as dispersion-strengthened 
mater ia l s  and t o  gain some addi t iona l  insight i n t o  methods whereby the  in t e rna l  
oxidation approach may be u t i l i z e d  t o  create improved aerospace materials. The 
a l loys  were a i r  oxidized f o r  200 hours a t  1200°, 150O0, and 1800' F and were 
then subsequently s t a b i l i t y  annealed i n  vacuum for  24 hours a t  2000° F. 

The major results were as follows: 

(1) Subscale penetration increased with decreasing solute  concentration and 
increasing oxidation temperature. 
850 microns as a r e s u l t  of oxidation alone were observed. 

Penetrations as great as approximately 

(2) External sca les  decomposed during the s t a b i l i t y  anneal and provided a 
somce of oxygen t h a t  caused fur ther  oxide penetration i n t o  the  specimens; t h i s  
was observed espec ia l ly  i n  those cases of pr ior  low-temperature oxidation which 
produced no observable subscale. 

(3)  The s t a b i l i t y  anneals, subsequent t o  the  higher temperature oxidation 
treatments, promoted only minor changes i n  the  s i ze  and shape of ex is t ing  in t e r -  
na l  oxides. 

(4) The subscale morphology d i f fe red  among the  d i f f e ren t  systems and in- 
cluded s m a l l ,  c lose ly  spaced p a r t i c l e s  (Ni-Mg), highly or iented ac icu lar  pasti- 
d e s  ( N i - a ) ,  and large,  widely spaced angular oxides ( N i - C r  and Ni -Mn) .  

(5) Based on o p t i c a l  microscopy, two al loys ( N i  - 1.32 atomic percent Mg 
and N i  - 0.98 atomic percent S i )  appeared t o  be par t icuJar ly  amenable f o r  appl i -  
ca t ion  as dispersion-strengthened mater ia ls .  The subscale oxides developed i n  
these a l loys  had cha rac t e r i s t i c s  analogous t o t h o s e  found i n  s in te red  aluminum 
powder. The oxide p a r t i c l e  diameters were 0.11 and 0.4 micron, respectively; 



INTRODUCTION 

Dispersoids have been produced i n  numerous a l loys  by the  processes of in -  
t e r n a l  oxidation. Subsurface oxides i n  t h e  form of s m a l l  dispersed spheroids 
or needles may, i n  many a l loys ,  be formed by exposing the  a l l o y  t o  an oxygen- 
bearing atmosphere a t  elevated temperatures. 
process occurs by se lec t ive  oxidation of one const i tuent  of the  a l loy .  
prehensive discussion of the  mechanisms involved has been presented i n  r e f e r -  
ences 1 t o  3. Although the  a b i l i t i e s  of i n t e rna l ly  formed oxides t o  r e t a r d  r e -  
c rys t a l l i za t ion  and t o  strengthen a l loys  were recognized i n  t h e  1940's  ( r e f s .  1 
and 4 ) ,  it was not u n t i l  l a t e r  t h a t  the  process was given ser ious consideration 
as a method of providing s t r u c t u r a l l y  sound dispersion-strengthened a l loys .  
Actually, it was not u n t i l  a f t e r  the  f u l l  p o t e n t i a l i t i e s  of dispersion- 
strengthened products were made graphical ly  evident by R.  Irmann ( r e f .  5)  t h a t  
ser ious attempts were made t o  produce dispersion-strengthened products by in-  
t e r n a l  oxidation methods. 
by Irmann were made by another process, namely, from the  extrusion of cold- 
pressed and s in te red  aluminum powders. Thin films of aluminum oxide t h a t  
formed na tura l ly  on the surfaces of these powders were broken up and the  f rag-  
ments dispersed by the  extrusion process. The long-time high-temperature sta- 
b i l i t y  of these products was outstanding. 

Basically,  the i n t e r n a l  oxidation 
A com- 

The SAP ( s in te red  aluminum powder) products produced 

Numerous invest igat ions have been conducted t o  study i n t e r n a l  oxidation of 
various materials i n  an attempt t o  produce dispersion-strengthened products 
( r e f s .  6 t o  11). 
u t i l i z e  in t e rna l  oxidation methods. Some have exhibited excel lent  high- 
temperature t e n s i l e  and creep-rupture s t rength;  i n  f a c t ,  some have creep 
s t rength t h a t  i s  analogous t o  t h e  s t rength achieved i n  aluminum SAP ( r e f .  6 ) .  

Some of the  strongest SAP-type mater ia ls  t h a t  have been made 

There a re  several  inherent and po ten t i a l  problems associated with producing 
stable,  high- strength, high-melting-point, dispersion- strengthened products by 
in t e rna l  oxidation. 
cant ly  as the  depth of subscale penetrat ion increases; f o r  example, Bonis and 
Grant ( ref .  1 2 )  have observed p a r t i c l e  s ize  var ia t ions  of over 300 percent. 
Other invest igators  have shown t h a t  the  p a r t i c l e  s i zes  of the  oxides a t  grain 
boundaries are much l a rge r  than p a r t i c l e s  within grains  ( r e f s .  7 and 13 t o  17), 
while Rhines ( r e f .  1 4 )  has noted t h a t  subscale penetrations may proceed prefer- 
e n t i a l l y  a t  gra in  boundaries. Final ly ,  surface oxides consis t ing l a rge ly  of the  
solvent metal oxide would have t o  be reduced or eliminated t o  permit fabr ica t ion  
of sa t i s fac tory  in t e rna l ly  oxidized products. All of these phenomena could lead  
t o  undesirable banded, segregated, or agglomerated oxides a f t e r  subsequent me- 
chanical processing, which may be employed i n  the production of dispersion- 
strengthened products. 

The s ize  of t he  in t e rna l  oxide p a r t i c l e s  may vary s ign i f i -  

Since the  s t rength and s t a b i l i t y  of dispersion-strengthened products, in -  
cluding those made by in t e rna l  oxidation, depend t o  a large extent on the  uni- 
formity of the  microstructure,  it w a s  f e l t  t h a t  addi t iona l  information about the 
process of i n t e r n a l  oxidation per se w a s  desirable .  
invest igat ion w a s  conducted t o  study i n t e r n a l  oxidation of several  nickel-base 
binary a l loys  t o  determine the  e f f e c t s  of oxidation temperature and so lu te  
concentration on the  depth of oxide penetrat ion and subscale morphology. 
addition, the invest igat ion w a s  conducted t o  study the  thermal s t a b i l i t y  of 

Therefore t h i s  exploratory 

I n  
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i n t e r n a l  oxide formations under a high-temperature anneal. 
such s tudies  would a l so  provide additional knowledge and a b e t t e r  understanding 
of the  problems associated with the  development of a l loys  or composites made 
from mater ia ls  containing in t e rna l  oxides. Such a l loys  would have considerable 
current significance i n  aerospace applications where t h e i r  inherent long-time 
high-temperature s t a b i l i t y  and strength could be used t o  f u l l  advantage. 
c i f i c  appl icat ions could include turbine engine components f o r  use i n  advance 
a i r c r a f t  such as the  supersonic t ransport  and advanced space-power systems. 

It was believed t h a t  

Spe- 

Oxidation tes ts  were conducted i n  air  with cas t  specimens of each a l loy  
system (n icke l  ( N i )  with aluminum (Al), magnesium ( M g ) ,  s i l i con  (S i ) ,  t i t a n i u m  
( T i ) ,  chromium (Cr), and manganese (Mn)) oxidized i n  a i r  f o r  200 hours a t  tem- 
peratures of 1200°, 1500°, and 1800° F. The s t a b i l i t y  of the  subsurface oxides 
formed w a s  explored by employing subsequent s t a b i l i t y  heat treatments f o r  24 
hours a t  2000° F. Studies were made of subscale penetrations, hardness, and 
morphology. 

Preparation of Specimens f o r  Oxidation 

Casting procedure. - Master m e l t s  were made of binary nickel-base a l loys  
of alminum, magnesium, s i l i con ,  titanium, chromium, or manganese. These a l loys  
were  prepared by induction melting under 1 atmosphere of argon i n  order t o  
minimize oxidation of t he  m e l t  consti tuents.  The percent p u r i t i e s  of t he  m e t a l s  
used, as determined by the  suppliers,  were as follows: nickel,  99.95; 
aluminum, 9%; magnesium, 99.5; s i l icon,  98+; titanium, 99.2; chromium, 99.3; 
and manganese, 9%. Charges w e r e  melted i n  zircon crucibles  and held i n  the  
molten state f o r  3 t o  5 minutes p r io r  t o  pouring i n  order t o  insure homogeneity 
of t h e  master melt. Melts were poured (under argon) i n t o  cold copper molds. 
Test a l loys  of t he  desired compositions were subsequently produced by remelting 
the  master melts together with e l ec t ro ly t i c  nickel under conditions iden t i ca l  
t o  those described previously. The amount of zirconium assimilated by the  tes t  
a l loys  during the  melting processes was not detectable spectrographically; 
however, chemical analysis  indicated s i l i c o n  "pickup" ranged from 0.007 t o  0.05 
percent. 

Chemical analyses. - Chemical analyses were made of each of the master 
a l l o y  cast ings i n  order t o  determine the  amount of e l e c t r o l y t i c  n icke l  required 
f o r  the remelt process. A second chemical analysis was made of each tes t  a l l o y  
t o  determine the f i n a l  composition. 
cen t r a l  sect ions of t h e  castings t o  provide material  for these analyses. 
a l l o y  compositions considered for each of t he  binary systems under invest igat ion 
are shown i n  table I (p. 4). 
regions of t h e i r  respective nickel-additive binary systems. 

Oil-free turnings were  removed from the  
The 

A l l  compositions were within t h e  so l id  solut ion 

Specimen fabricat ion.  - Cylindrical  t e s t  alloy cast ings were cut normal t o  
t h e i r  longi tudinal  axes t o  provide l/Z-inch-diameter specimens approximately 
3/16 of an inch i n  thickness. Each specimen was polished on both f l a t  faces  
with metallographic polishing papers; the  f i n a l  paper w a s  600 g r i t .  

3 



TABLE I. - ALLOY COMPOSITIONS INVESTIGATED 

Solu te ,  
toiiiic p e r c e n t .  

0.48 A1 
1.66 
3.52 
9.01 

0.27 Mg 
.43 

1.32 

0.073 Si 
.98 
3.00 
8.77 

- 

Binar) 
systea 

Binary 
system 

Ni-Ti 

Ni-Cr 

- 
Ni -Mn 

Ni -A1 

Ni -Mg 

Ni-Si 

Solu te ,  
.toniic pe rcen t  

0.08C Ti 
.98 
3.01 
10.8 

0.088 C r  
.76 

3.69 
9.13 

0.075 Mn 
.75 
2.94 
8.93 

Oxidation Treatments 

I n i t i a l  oxidation. - Polished spec- 
imens were oxidized i n  f i r e b r i c k  fur -  
naces heated by globar-type elements. 
stagnant a i r  oxidizing atmosphere was 
employed. One sample of each a l loy  was 
oxidized a t  each of the  following tem- 
peratures: 1200°, 1500°, and 1800' F 
f o r  200 hours. The specimens were placed 
i n  Alundum furnace boats  i n  such a way 
that  both of t h e i r  f l a t  surfaces were 
completely exposed t o  the  oxidizing at-  
mosphere. Oxidation temperatures c.ited 
were measured by means of a thermocouple 
located immediately above the  furnace 
boat and were maintained within +5O F. 

A 

All the  compositions of a given a l loy  system (maximum of fou r  samples) were 
oxidized simultaneously t o  eliminate the  poss ib i l i t y  of solute  contamination 
of one system by another. Upon removal from the  furnace, specimens were a i r  
cooled. 

S t ab i l i t y  heat treatment. - After i n i t i a l  oxidation treatments, the  disk- 
shaped specimens were cut diametrically i n t o  two sections.  One of the  sect ions 
was prepared f o r  metallographic examination and the  other  was heat t r e a t e d  i n  
order t o  determine the  high-temperature s t a b i l i t y  of the subsurface oxides 
formed during i n i t i a l  oxidation. The l a t t e r  specimens were placed i n  a 
resistance-heated ceramic-lined vacuum furnace f o r  2 4  hours a t  a temperature of 
2000' F. 
out t h i s  process. Specimens were a i r  cooled upon completion of t he  s t a b i l i t y  
treatment. 

A pressure of lom5 t o  atmosphere of a i r  was maintained through- 

Microhardne s s Tests 

Specimens used i n  microhardness determinations were mounted, polished, and 
etched for  15 seconds w i t h  a nickel  e tch  ( 9 2  ml HC1, 3 m l  HN03, and 5 ml H2SO4). 
A microhardness t e s t e r  equipped with a standard 136' diamond penetrator  loaded 
t o  1 kilogram was employed t o  determine the  hardness values f o r  each specimen a t  
both the  cen t r a l  portions of the  subscale and i n  the  zone unaffected by subscale 
formation. The average of 10 measurements, taken i n  each zone of each specimen, 
w a s  determined. I n  a few cases, where the  subscale penetration was too  s m a l l  t o  
accommodate the  indentation made with a 1-kilogram load, a 50-gram load was em- 
ployed. I n  these instances the  average hardness numbers obtained were converted 
t o  those of an equivalent 1-kilogram load by the  method of l i n e a r  proportions. 
Alloys t h a t  had been oxidized a t  1800° F were hardness t e s t e d  before and a f t e r  
t h e i r  s t a b i l i t y  heat treatments; those oxidized a t  lower temperatures were not 
hardness t e s t e d  because of the  r e l a t i v e l y  small subscale penetrations developed. 

4 



Metallographic Studies 

Specimens used i n  metallographic exaninations were mounted i n  Bakelite, 
polished i n  a manner which preserved one edge of the  specimen, and etched with 
modified Marble's reagent (2.5 g CuClz dissolved i n  125 m l  %O, 97 ml HCL, and 
3 m l  HN03). 
i t y  heat- t reated specimens were taken and the penetration and morphological 
cha rac t e r i s t i c s  of the  subscales formed i n  each of the  a l loys  considered were 
determined. 
ness of t h a t  zone contained between the  external oxide-subscale in te r face  and 
the  subscale-alloy interface.  
photomicrographs of various known magnifications and converted t o  ac tua l  depth 
dimensions. 
S i )  t h a t  exhibited l a rge r  numbers of f ine ly  dispersed subscale oxides were 
selected f o r  fu r the r  study by e lec t ron  microscope techniques. 
these a l loys  were vibratory polished, etched with modified Marble's reagent,  
shadowed with chromium, and rep l ica ted  with s i l i c o n  monoxide. Electron photo- 
micrographs of the  r ep l i cas  were used for a determination of the volume f r ac -  
t i o n  oxide, t he  average p a r t i c l e  s i ze ,  and the d i s t r ibu t ion  of p a r t i c l e  s i zes ,  
as well  as the i n t e r p a r t i c l e  spacing of the  subscale oxides formed i n  these 
al loys.  

Photomicrographs of t h e  preserved edges of as-oxidized and s t ab i l -  

The values of subscale penetrations measured represent the  thick- 

Penetration measurements were taken d i r e c t l y  from 

Two a l loys  ( N i  - 1.32 atomic percent Mg and N i -  0.98 atomic percent 

Specimens of 

RESULTS 

Subscale Penetration Studies 

The depth of subscale penetration (based on metallographic invest igat ion)  
f o r  the  various a l loys  i n  the  as-oxidized and the  as-oxidized plus  s t a b i l i t y  
heat- t reated conditions i s  shown as a function of composition and oxidizing 
temperature i n  f igures  l (a )  t o  l(f). I n  general, f o r  both of these conditions, 
the amount of subscale formed ( i . e . ,  depth of penetrat ion)  was observed t o  de- 
crease as  the  so lu te  concentration was increased. 

The e f f e c t  of oxidizing temperature on the penetration behavior i s  a l s o  
shown i n  f igure  1. It i s  evident t h a t  the temperature of oxidation g rea t ly  
affected t h e  degree of penetration; la rger  penetrations a re  associated with 
higher temperatures of oxidation f o r  a l l  of the systems investigated.  Further- 
more, t h i s  e f f e c t  i s  more pronounced i n  alloys of low so lu te  concentrations. 
Summary p l o t s  of the  curves of t he  1800' F as-oxidized data are presented i n  
f igure  2. 
t o  result f r o m  the  oxidation treatment alone. 

Subscale penetrations up t o  approximately 850 microns were observed 

The s t a b i l i t y  heat treatment produced an increased depth of subscale 
penetration i n  each of the  a l loy  systems considered regardless  of the  temper- 
ature of the  i n i t i a l  oxidation treatment. 

It should be noted that the  s t a b i l i t y  anneal, although performed i n  a 
vacuum, was made with specimens having a considerable ex terna l  sca le  produced 
o r ig ina l ly  by the i n i t i a l  i n t e rna l  oxidation. 
so ca l led  " s t a b i l i t y  anneal" was an addi t iona l  i n t e r n a l  oxidation treatment 

In  a sense, t he  high temperature 
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since the  surface scale as wel l  as the  r e s idua l  a i r  i n  the  vacuum furnace un- 
doubtedly acted as sources of oxygen. This increase was more noticeable i n  
those alloys t h a t  contained a low concentration of solute.  
were i n i t i a l l y  oxidized a t  1200' o r  1500' F were affected by the  s t a b i l i t y  
treatment t o  a grea te r  degree than those i n i t i a l l y  in t e rna l ly  oxidized a t  
1800° F. 
e r a l  response of a l l  the  systems studied t o  the  s t a b i l i t y  heat treatment. 

Also, specimens t h a t  

Curves fo r  the Ni-A1 system ( f i g .  l ( a ) )  a re  representat ive of t he  gen- 

Hardness Studies 

The microhardnesses of t he  subscale and the  unoxidized zones of binary 
a l loy  specimens oxidized a t  1800' F, both before and a f t e r  the s t a b i l i t y  heat 
treatment, are shown i n  f igu res  3 (a )  t o  3 ( f )  as functions of solute  concentra- 
t ion.  Hardness measurements f o r  the lower temperature oxidation conditions 
were not attempted because of t he  s m a l l  subscale penetrations obtained. Values 
of hardness ranged from approximately 70 t o  300 diamond pyramid hardness i n  
the  subscale zones and from approximately 70 t o  150 diamond pyramid hardness i n  
the central  zones. I n  general ,  the  hardness of t he  subscale zone exceeded t h a t  
of t he  unoxidized zone. An i n i t i a l  increase i n  subscale hardness followed by a 
decrease a t  higher solute  concentrations w a s  observed i n  the  Ni-Si, N i - C r y  and 
N i - M n  systems. For these systems, the  hardness of the  subscale zone w a s  lower 
than t h a t  of the  cen t r a l  (unoxidized) zone a t  higher solute  concentrations. 
The s t a b i l i t y  heat  treatment generally reduced the  hardness of both the  subscale 
and the  unoxidized regions of the a l loys  investigated.  This reduction i n  sub- 
scale  hardness was pa r t i cu la r ly  noticeable a t  the  higher solute  concentrations 
for the  N i - A l ,  Ni-Ti ,  and N i - M n  a l loys.  

For comparison, a s m a r y  p lo t  of the  va r i a t ion  of subscale hardness with 
composition f o r  each binary system i n  the  1800' F as-oxidized condition i s  
shown i n  f igure  4. Except f o r  the  Ni-Si and N i - C r  systems, a near ly  l i n e a r  in-  
crease i n  hardness with increasing solute  concentration was  noted. The l a rges t  
increase i n  hardness, up t o  approximately 300 diamond pyramid hardness, w a s  
obtained with the Ni-A1 system. The Ni-Mn a l l o y  system exhibited one of t he  
smallest increases i n  hardness, up t o  approximately 110 diamond pyramid hard- 
ness , with increasing solute  concentration. 

Morphology of In t e rna l  Oxides 

Each a l l o y  system w a s  invest igated metallographically i n  order t o  deter-  
mine the e f f e c t s  of a l l o y  composition, oxidizing temperature, and s t a b i l i t y  
heat treatment on the  morphological cha rac t e r i s t i c s  of the  subscales formed by 
oxidation at 1800' F. 
oxidizing temperatures (1200' and 1500' F) w a s  l imited,  metallographic s tud ies  
of specimens oxidized a t  these temperatures a r e  presented f o r  only the  N i - A 1  
system. 
each of the  a l l o y  systems investigated.  

Since the  degree of subscale formation a t  the  lower 

Figures 5 t o  10 provide photomicrographs at a magnification of 500 for 

As-oxidized. - Figure 5 shows photomicrographs of the as-oxidized N i - A 1  
al loys.  It i s  evident from examination of t he  photomicrographs of t h i s  f igure  
t h a t  temperature has a s ign i f icant  e f f ec t  on the  morphological cha rac t e r i s t i c s  

6 
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of the  subsurface oxides ( f igs .  5 (a )  t o  5(1)). 
crease, the  depths of penetration of t he  in t e rna l  oxides and the oxide p a r t i c l e  
s i zes  increased a s  the  oxidizing temperature w a s  increased. The volume f r ac t ion  
of oxides decreased with increasing temperature between 1500' and 1800' F. 
1200' F there  was no observable penetration; some penetration of p a r t i c l e s  
( l a rge  spheroids) occurred a t  1500° F. 
i s  evidence of p re fe ren t i a l  penetration of oxides along the  grain boundaries. 
Similar penetrations have been observed i n  other specimens of Ni-A1 in t e rna l ly  
oxidized a t  1500° F (unpublished NASA data).  
of p rec ip i t a t e s  w a s  evident. I n  addition, there  w a s  a tendency f o r  the  alumi- 
num oxide p a r t i c l e s  t o  be acicular  a f t e r  oxidation a t  1800' F. 

For a given concentration in- 

A t  

I n  one of the  f igu res  ( f ig .  5 ( f ) )  there  

A t  1800° F a la rge  volume percent 

The descr ipt ions of the morphological changes t h a t  follow include a l l  of 
the  systems studied f o r  an in t e rna l  oxidizing temperature of 1800' F. It should 
again be noted t h a t  only one in t e rna l  oxidation temperature was used f o r  morpho- 
log ica l  s tud ies  of systems other than the  Xi-A1 system. Metallographic examina- 
t i o n  showed t h a t  s ign i f icant  changes i n  structure occurred with a l l  of the  mate- 
r ia ls  as concentration of the solute  elements w a s  varied. There w a s  a tendency 
t o  form spheroids a t  the lowest concentrations of solute  i n  a l l  of the  systems. 
A s  solute  concentration was increased there w a s  a tendency t o  form acicular  
s t ruc tures  i n  the  Ni-A1 and the  N i - C r  systems. Increases i n  volume percent of 
subscale oxides with increasing solute  concentrations were generally observed 
f o r  a l l  the  systems, except a t  the  highest  solute concentration f o r  the  N i - C r  
and the  Ni-Si systems. 
peared t o  decrease with increasing solute  concentration except i n  the  case of 
the  Ni-Mn system. 
t i c l e s  t h a t  were r e l a t ive ly  large compared t o  the  p a r t i c l e s  present i n  the other 
oxidized a l loy  systems. 

In t e rpa r t i c l e  spacings (separat ion between oxides) ap- 

I n  general, the  N i - C r  and Ni-Mn systems exhibited oxide par- 

As-oxidized plus s t a b i l i t y  annealed. - The s t a b i l i t y  treatment, consisting 
of a 2000° F heat treatment f o r  24 hours i n  vacuum, w a s  applied t o  specimens 
t h a t  had previously been oxidized. Decomposition of the  surface scales  formed 
during the  oxidizing treatments occurred during the  s t a b i l i t y  annealing t r e a t -  
ments. This decomposition of the  surface oxides provided a source of oxygen f o r  
continued i n t e r n a l  oxidation. Furthermore, the vacuum was not su f f i c i en t ly  high 
t o  prevent addi t ional  oxidation by residual  gases from occurring. A s  a resu l t ,  
the  depths of penetration were generally increased during the  s t a b i l i t y  anneal- 
ing treatment. I n  some cases there  were penetrations where none had previously 
existed.  With the  N i - A l ,  Ni-Mg, Ni-Si, and N i - C r  al loys,  no gross s t ruc tu ra l  
changes were observed i n  the  oxide morphology a s  a r e s u l t  of t he  s t a b i l i t y  an- 
nealing. I n  t h e  case of Ni-Ti  and Ni-Mn systems, a major s t r u c t u r a l  change w a s  
observed i n  t h a t  there  w a s  a tendency f o r  the oxides t o  agglomerate i n t o  spher- 
oids  - espec ia l ly  those a l loys  of higher solute concentration. 

Miscellaneous observations. - I n  the  case of t he  N i - A l ,  Ni -Ti ,  and N i - C r  
systems, the  p a r t i c l e  s izes  of the  oxide tended t o  become l a rge r  as  the  depth of 
penetration increased. 
solute  concentrations, the  external  scales  appeared t o  be so r e s i s t a n t  t o  oxygen 
penetration t h a t  t he  region adjacent t o  them did not exhib i t  s ign i f icant  amounts 
of subscale formation. I n  the  case of the Ni-Mn specimens, the  proportion of 
large oxides r e l a t i v e  t o  small oxides varied; i n  some cases, the  large oxides 
were close t o  the  external  surface while i n  others they were a t  the  i n t e r n a l  

I n  some systems, such as  Ni-Si and N i - C r  a t  the  highest  
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oxide-unoxidized a l loy  interface.  

S i 0 2  

T i 0  

Ti203 

It i s  in te res t ing  t o  note t h a t  i n  the  highest  si l icon-bearing alloy, oxi- 
dat ion appeared t o  be completely stopped f o r  both the  i n i t i a l l y  oxidized speci- 
mens and the  s t a b i l i t y  heat- t reated specimens ( f i g .  7 (  d )  ). 
i n  the  N i - A l ,  N i - T i ,  and N i - C r  systems a l s o  inh ib i ted  the production of the  in- 
t e r n a l l y  oxidized zone ( f ig s .  5(d),  8 ( d ) ,  and 9 ( d ) ) .  

High solute  contents 

-156.2 MnO -140.1 

-190.9 m 3 0 4  -112.9 

-187.3 Mn203 -101.4 

Mn02 J&J < 8: 

DISCUSSION 

Applicabi l i ty  of Results t o  Dispersion Strengthening 

Electron micrographic studies.  - Two of the  a l loys  appeared t o  have s t ruc-  
t u r e s  t h a t  par t icu lar ly  warranted e lec t ron  micrographic study; namely, the  Ni-Mg 
a l loy  w i t h  1.32 atomic percent magnesium ( f i g .  6( d) ) and a Ni-Si a l loy  with 0.98 
percent s i l i con  ( f i g .  7(  e )  ). The d i s t r ibu t ion  of subscale oxide p a r t i c l e  s i zes  
of these al loys i s  shown i n  f igure  11. The average i n t e r p a r t i c l e  spacing meas- 
ured f o r  the magnesium bearing in t e rna l ly  oxidized a l loy  w a s  0 . 7 3  micron, the  
average pa r t i c l e  s ize  was 0.11 micron, and the volume percent of oxide was 1 2 . 2  
i n  the  microstructure examined. In t e rpa r t i c l e  spacing as low as t h a t  obtained 
would suggest t h a t  a mater ia l  such as t h i s  might lend i t s e l f  t o  f ab r i ca t ion  as 
a dispersion-strengthened product. The s i l i c o n  alloy, however, had a somewhat 
l a rge r  average in t e rpa r t i c l e  spacing of 6 microns, an average p a r t i c l e  s i ze  of 
0 .4  micron, and a volume percent of oxide of 7.5. Such spacings and s i zes  a re  
not as f ine  as would be desired f o r  dispersion-strengthened products. The SAP 
analog alloy mater ia l  should have an i n t e r p a r t i c l e  spacing of the  order of 0.3 
micron and pa r t i c l e  s i zes  of the order of 0.02 micron. It i s  believed, however, 
t h a t  materials with more ideal ized s t ruc tures  could be produced by var ia t ions  i n  
thermal and/or mechanical treatment. I n  fact ,  other inves t iga tors  ( r e f .  7 )  have 
produced silicon-bearing copper-base product with p a r t i c l e s  as f i n e  as 0.04 m i -  
cron by in te rna l  oxidation. 
aluminum oxide i n  copper by an in t e rna l  oxidation process. 

They have a l s o  produced f i n e l y  dispersed (0.01 p)  

TABLE 11. - FREE ENERGIES OF FORMATION OF STABLE Thermodynamic considerations. - 
Small i n t e r p a r t i c l e  spacings and par- 
t i c l e  s izes  a re  desirable  i n  disperse- METALLIC OXIDES PER MOLE OXYGEN AT 1800' F 

formation,  

-202.9 Ti02 

Free energy  of 
format ion ,  

-182.0 

-171.4 

MgO I -226.7 11 C r 2 0 3 1  -129.0 

phase strengthened materials.  The 
dispersoids  must a l s o  s a t i s f a c t o r i l y  
r e s i s t  agglomeration, a process which 
tends t o  increase both i n t e r p a r t i c l e  
spacing and p a r t i c l e  s ize .  The tend- 
ency of oxide dispersoids t o  agglom- 
e r a t e  i s  opposed by t h e i r  inherent 
s t a b i l i t y .  This, i n  turn,  may be 
measured qua l i t a t ive ly  by the  r e l a t i v e  
values of f r e e  energy of oxide forma- 
t ion .  Such values, based on l mole of 
oxygen, were calculated f o r  the  so l -  
u tes  employed herein by using the data  
of reference 18. Table I1 indica tes  
t h a t  magnesium oxide has the  l a rges t  



. 
(negative) f r e e  energy of formation whereas s i l i con  dioxide does not demonstrate 
an outstandingly la rge  value i n  t h i s  respect. Subscale oxides of the nickel - 
0.98-atomic-percent s i l i con  a l loy  exhibited a r e l a t ive ly  f i n e  pa r t i c l e  s ize  
which w a s  not appreciably affected by the  s t a b i l i t y  heat treatment. 
another a l loy  with solute  oxides having larger  f r e e  energies of formation dis- 
played evidences of agglomeration. 
fore, t h a t  the f r e e  energy of oxide formation cannot be t h e  sole c r i t e r i o n  which 
governs p a r t i c l e  s t a b i l i t y  i n  in t e rna l ly  oxidized dispersion-strengthened 
products. 

However, 

It i s  evident and important t o  note, there- 

Inherent microstructural  considerations associated with the i n t e r n a l  
oxidation mechanism. - It might be expected t h a t  t he  oxide stabil i ty of t he  
dispersion-strengthened product should be enhanced i f  the  oxide dispersoids were 
a l l  spheroids of approximately t h e  same size. Furthermore, it may be assumed 
t h a t  the  gross strength of dispersion-strengthened products would be greater  i f  
there  were l e s s  banding and greater  uniformity of dispersion of par t ic les .  
Hence, the  processes by which such heterogeneous configurations may be prevented 
from forming should be explored. Three of the main poten t ia l ly  troublesome 
types of dispersoids producible by in t e rna l  oxidation are i l l u s t r a t e d  schemati- 
ca l ly  i n  f igure  12.  Figure 12 (a )  shows an external  scale and a subscale con- 
s i s t i n g  of dispersoids having a r e l a t ive ly  uniform front,  but  with l a rge r  dis- 
persoids a t  the grain boundaries. On extruding or r o l l i n g  such a product, t he  
microstructure would be expected t o  exhibit banding with large pa r t i c l e s  within 
the  bands. Figure 12(b) i l l u s t r a t e s  another observation t h a t  has been made i n  
t h i s  investigation; namely, pa r t i c l e  s i zes  of bulk-diffused materials (i. e., 
those wherein the  oxides were formed on a re la t ive ly  uniform f ron t )  may a l so  
vary from la rge  t o  small. It was noted previously t h a t  t he  large pa r t i c l e s  
might occur away from the  outer edge of the specimen ana a t  the  farthest point 
of penetration i n t o  the  specimen; i n  other cases, they might form at  or near t h e  
outer edge adjacent t o  the  surface scale. Differences i n  oxide pa r t i c l e  s izes  
from the  ex terna l  surface of the  material  t o  the  inside could i n  this  case a l s o  
contribute t o  a heterogeneous s t ructure  a f t e r  working. 
penetration t h a t  may be undesirable i s  shown i n  f igure  12(c) .  Here there  i s  an 
obvious increase i n  oxide penetration a t  t h e  grain boundaries. These "prongs, 
or advance penetrations produced i n  the grain boundaries r e l a t i v e  t o  the  pene- 
t r a t i o n s  produced i n  the  bulk of t h e  specimen, can a l so  cause heterogeneity of 
t h e  s t ructures .  Some of these configurations can be prevented by var ia t ions  of 
t he  heat- t reat ing temperatures. For example, i n  t he  Ni-A1 a l loys  t h a t  were in-  
t e r n a l l y  oxidized, grain boundary penetration of aluminum oxide was eliminated 
by r a i s ing  t h e  temperature from 1500' t o  1800' F. 

S t i l l  a t h i r d  type of 

I 1  

P o s s i b i l i t i e s  f o r  Future Development 

Dispersion-strengthened products have been made by in t e rna l  oxidation 
processes and i n  some cases have exhibited very good propert ies  r e l a t i v e  t o  
a l loys  made from comparable base materials.  
clude t h e  formation of i n t e rna l  carbides or ni t r ides  by diffusion of carbon or 
nitrogen in to  a matrix and the  subsequent reaction of these mater ia ls  with al-  
loying addi t ives .  Although the  f ree  energies of these compounds a re  generally 
lower than those of the  corresponding oxides, there i s  a poss ib i l i t y  that t h e  
morphological charac te r i s t ics  of such products produced i n  s i t u  i n  the  matrix 
could outweigh t h e  f ac to r s  of s t a b i l i t y  as measured by free energy consider- 

Areas f o r  fu ture  work m i g h t  i n -  
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at ions.  I n  the case of carbides, f o r  example, the  possible dispersoids  t h a t  
might form could very r ead i ly  strengthen superalloy types of mater ia ls .  
more should a l so  be done t o  understand t h e  f ac to r s  cont ro l l ing  the  morphology of 
oxides formed by in t e rna l  oxidation methods. 
timized microstructures, t h a t  i s ,  uniform u l t r a f i n e  dispersoids,  must be de te r -  
mined f o r  d i f fe ren t  meta l l ic  systems i n  order t o  produce optimized propert ies  i n  
such systems. 
than one react ing metal i n  so l id  solut ion.  The double oxides t h a t  might be pos- 
s i b l e  i n  these instances could have d i f f e ren t  e f f e c t s  on the  s t rength of the 
products than s ingle  oxides. 
standing of methods t o  produce dispersion-strengthened products from complex 
systems, but it might a l s o  contribute t o  the  understanding of t he  surface oxida- 
t i o n  of various complex a l loys .  

Much 

Conditions t h a t  w i l l  produce op- 

Another a rea  of i n t e r e s t  would r e l a t e  t o  a l loys  containing more 

Not only w i l l  such information help i n  the  under- 

Processes may a l s o  be devised t h a t  combine i n t e r n a l  oxidation and powder 
metallurgy techniques t o  provide a dispersion-strengthened product. 
processes t h a t  appears t o  have great  po ten t i a l  i s  t h a t  which involves the  in-  
t e r n a l  oxidation of prealloyed powders. This procedure i s  described i n  r e f e r -  
ence 6. The major s teps  i n  the  fabr ica t ion  of a product by t h i s  technique in-  
clude the  in t e rna l  oxidation of a prealloyed powder, the  removal of ex terna l  
oxide scales,  and the  subsequent s in t e r ing  and extrusion operations. 
alloyed powders a r e  now cammercially ava i lab le ,  and only r e l a t i v e l y  short  times 
should be required i n  order t o  oxidize s a t i s f a c t o r i l y  in t e rna l ly  f a i r l y  la rge  
a l l o y  powders. Also, t he  undesirable ex terna l  oxide scale  normally formed dur- 
ing the  in t e rna l  oxidation process could be kept t o  a minimum by oxidizing the  
powders i n  a low p a r t i a l  pressure of oxygen without adversely a f f ec t ing  the  
subscale formed. It has been shown t h a t  t h e  cha rac t e r i s t i c s  of subscale for- 
mation i n  sol id-solut ion N i - A 1  a l loys  a re  near ly  independent of oxygen pressure 
and t h a t  the  amount of ex terna l  scale  decreases with decreasing oxygen pressure 
over t he  range of 10 t o  lo-* atmosphere ( r e f .  19 ) .  
s in te red  in t e rna l ly  oxidized mater ia l  can extend the  number of usefu l  a l l o y  
systems. 
( f igs .  S (b )  and ( e ) )  might be sa t i s f ac to ry  i f  t he  p l a t e l e t  s t ruc ture  could be 
e f fec t ive ly  broken up by the  extrusion process. 

One of the  

€Ye- 

Finally,  extrusion of the 

For example, the  intermediate solute  concentration N i - A 1  a l loys  

SUMMARY OF RFSULTS 

The following r e s u l t s  were obtained from an invest igat ion of the  in t e rna l  
oxidation of a s e r i e s  of nickel-base sol id-solut ion binary al loys.  The solute  
metals were aluminum, magnesium, s i l i con ,  t i tanium, chromium, and manganese. 
A l l  a l loys were oxidized f o r  200 hours a t  e i t h e r  1200°, 1500°, or 1800' F. 
subscale oxides so formed were subsequently subjected t o  a s t a b i l i t y  heat t r e a t -  
ment of 24 hours a t  2 O O O O F  i n  vacuum. 

The 

1. The depth of subscale penetration increased, both with decreasing solute  
concentration and increasing oxidation temperatures. Penetrations ranged from 
a negligible amount t o  approximately 850 microns a f t e r  the  oxidation treatment. 

2. Surface scales  found i n  oxidizing treatments tended t o  decompose during 
s t a b i l i t y  annealing treatments i n  the  vacuum atmosphere t o  fu r the r  oxidize the  
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specimens. I n  low-temperature oxidation treatments, where no in te rna l  oxides 
were i n i t i a l l y  observed, t he  s t a b i l i t y  treatments produced large in t e rna l ly  
oxidized zones. 

3. S t a b i l i t y  anneals at  higher than the i n i t i a l  oxidizing temperature i n  
some cases caused r e l a t i v e l y  l i t t l e  change i n  shape and s i ze  of t he  o r ig ina l  
(as-oxidized) i n t e r n a l  oxides produced. 

4. The morphology of t he  subscales developed included small, closely spaced 
p a r t i c l e s  ( i . e . ,  Ni-Mg a l loys)  , highly acicular ,  oriented pa r t i c l e s  ( i .e . ,  N i - A l  
a l loys) ,  and la rge ,  widely spaced angula.r shaped oxides ( i .e. ,  N i - C r  and Ni-Mn 
a l loys  ) . 

5. Based on op t i ca l  microscopy, two alloys,  t h e  n icke l  - 1.32-atomic- 
percent magnesium and t h e  nickel  - 0.98-atomic-percent s i l i con  a l loys  appeared 
t o  be pa r t i cu la r ly  amenable t o  appl icat ion as dispersion-strengthened materials. 
The subscales developed i n  these a l loys  exhibited microstructures i n  the  as- 
oxidized conditions with charac te r i s t ics  analogous t o  those found i n  aluminum- 
SAP products. Par t ic le  s izes  of 0.11 and 0.4 micron and in t e rpa r t i c l e  spacings 
of 0.73 and 6 microns, respect ively,  were  measured from elec t ron  micrographs 
of these al loys.  

CONCLUDING REMARKS 

Some in t e re s t ing  observations may be drawn f r o m  t h e  r e s u l t s  of t h i s  study 
t h a t  may f a c i l i t a t e  t he  design and development of dispersion-strengthened alloys. 
In t e rna l  oxidation treatments such as those u t i l i zed  i n  t h i s  invest igat ion may 
be applied t o  bulk materials or t o  powdered alloys. The data presented may be 
u t i l i z e d  t o  approximate t h e  depth of oxide penetration i n  a l loys  of similar com- 
posi t ions t o  those of t h i s  study but exposed t o  d i f fe ren t  t i m e s  and temper- 
a tures .  Also, heat treatments subsequent t o  the i n i t i a l  oxidation treatment 
together with var ia t ions  i n  solute  content may be employed t o  produce desired 
morphology. Final ly ,  f i n e  s t ructures  such as the  ac icu lar  prec ip i ta tes  of 
oxides could probably be fragmented and dispersed i n  a dispersion-strengthened 
product by such mechanical processing methods as  extrusion o r  ro l l ing .  

Lewis Research Center, 
National Aeronautics and Space Administration, 
Cleveland, Ohio, February 15, 1965. 
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(a-1) Oxidation a t  1800' F. 
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0 

(a-3) Oxidation a t  1500' F. 

0 4 8 12 

(a-2) Oxidation a t  WOO0 F plus  
s t a b i l i t y  heat  treatment. 

(a-4) Oxidation a t  1500' F plus 
s t a b i l i t y  heat  treatment. 

0 4 8 12 
Aluminum concentration, atomic percent 

(a-5) Oxidation a t  1200° F. (a-6) Oxidation a t  1200' F plus  
s t a b i l i t y  heat  treatment. 

( a )  Nickel-aluminum a l loys .  

Figure 1. - Subscale penetrat ion i n  various nickel-base b inary  a l loys  a s  func- 
t i o n  of so lu te  concentration a f t e r  oxidation for 200 hours a t  1800°, 1500°, 
and l Z O O o  F before and a f t e r  s t a b i l i t y  heat  treatment. 

14 



1200 

800 

400 

0 
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(b-3) Oxida- 
t i o n  a t  
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(b-2) Oxidation a t  18W0 F 
plus s t a b i l i t y  heat 
treatment. 

(b-4) Oxidation a t  1500° F 
plus s t a b i l i t y  heat 
treatment. 

0 4 
Magnesium concentration, 

atomic percent 

(b-5) Oxida- (b-6) Oxidation a t  120G0 F 
t i o n  a t  plus s t a b i l i t y  heat 
12000 I?. treatment. 

(b)  Nickel-magnesium alloys. 

Figure 1. - Continued. Subscale penetra- 
t i o n  in  various nickel-base binary 
a l loys  as f'unction of solute concentra- 
t i o n  a f t e r  oxidation for  200 hours a t  
1800°, 1500°, and 1200' F before and 
a f t e r  s t a b i l i t y  heat treatment. 
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IL - 
* r i  
c, 
(d 
k 
c, 

(c-1) Oxidation a t  1800° F. 

(c-3) Oxidation a t  1500' F. 

( c -2 )  Oxidation a t  1800° F plus 
s t a b i l i t y  heat  treatment. 

(c-4) Oxidation a t  1500' F plus  
s t a b i l i t y  heat  treatment. 

S i l i con  concentration, atomic percent 

(c-5) Oxidation a t  1200' F. (c-6) Oxidation a t  1200' F plus 
s t a b i l i t y  heat  treatment. 

( c )  Nickel-s i l icon a l loys .  

Figure 1. - Continued. Subscale penetrat ion i n  various nickel-base b inary  
a l loys  as funct ion of so lu te  concentration a f t e r  oxidation f o r  200 hours 
a t  1800°, 150O0, and 1200° F before  and after s t a b i l i t y  heat treatment. 
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(d-1) Oxidation a t  1800' F. 

(d-3) Oxidation a t  1500' F. 

0 4 

(d-2) Oxidation a t  1800' F plus 
s t a b i l i t y  heat treatment. 

(d-4) Oxidation a t  1500° F plus 
s t a b i l i t y  heat  treatment. 

0 4 0 12 
Titanium concentration, atomic percent 

(d-5) Oxidation a t  1200~ F. (d-6) Oxidation a t  1200' F plus 
s t a b i l i t y  heat treatment. 

(d )  Nickel-titanium al loys.  

Subscale penetration i n  various nickel-base binary 
a l loys  as f'unction of so lu te  concentration after oxidation f o r  200 hours 
a t  180O0, 150O0, and 1200O F before  and a f t e r  s t a b i l i t y  heat  treatment. 

Figure 1. - Continued. 



(e-1) Oxidation a t  1800° F. 

400-1 0 

(e-3) Oxidation a t  15000 F. 

0 4 8 12 

(e-2) Oxidation a t  1800° F plus 
s t a b i l i t y  heat treatment. 

(e-4) Oxidation a t  1500' F plus 
s t a b i l i t y  heat treatment. 

0 4 8 12 
Chromium concentration, atomic percent 

(e-5) Oxidation a t  1200° F. (e-6) Oxidation a t  1200' F plus 
s t a b i l i t y  heat treatment. 

( e )  Nickel-chromium alloys.  

Figure 1. - Continued. Subscale penetration i n  various nickel-base binary 
al loys as function of so lu t e  concentration a f t e r  oxidation fo r  200 hours 
a t  1800°, 1500°, and 1200' F before and after s t a b i l i t y  heat treatment. 
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(f-1) Oxidation a t  1800° F. ( f -2)  Oxidation a t  1800° F plus 
s t a b i l i t y  heat treatment. 

a, (f-3) Oxidation at  1500' F. 
d 
Ld 
V 
LD 

0 4 8 12 

( f -4)  Oxidation a t  1500' F plus 
s t a b i l i t y  heat  treatment. 

a 12 
Manganese concentration, atomic percent 

(f-5) Oxidation a t  1200' F. ( f -6)  Oxidation a t  1200° F plus 
s t a b i l i t y  heat  treatment. 

( f )  Nickel-manganese al loys.  

Figure 1. - Concluded. Subscale penetration i n  various nickel-base binary 
a l loys  as function of so lu te  concentration a f t e r  oxidation f o r  200 
hours a t  1800°, 1500°, and 1200' F before and a f t e r  s t a b i l i t y  heat 
treatment. 
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Figure 2. - Summary p lo t  of subscale penetration i n  various 
nickel-base binary alloys as function of solute concentra- 
t ion  a f t e r  oxidation for  200 hours a t  1800° F. 
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I .  

Solute concentration, atomic percent 
6 8 10 

Figure 4. - Summary p lo t  of subscale hardness i n  various 
nickel-base binary a l loys  as function of so lu t e  con- 
centrat ion a f t e r  oxidation for 200 hours a t  1800° F. 
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(a-1) As-oxidized. 

*I * % - .  
(a-2) As-oxidized plus stability heat treatment. 

(a) Aluminum content, 0.48 atomic percent; temperature, 
1800' F. 

Figure 5. - Photomicrographs of nickel-aluminum a l l o y  
oxidized for 200 hours before and after stability 
heat treatment. Marble's etch. ~500. 
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(b-1) As-oxidized. 

(b-2) As-oxidized plus s t a b i l i t y  heat  treatment. 

(b) Aluminum content, 1 .66  atomic percent; temperature, 
lt300° F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
num alloy oxidized for 200 hours before and a f t e r  
s t a b i l i t y  heat treatment. Marble's etch.  ~500. 



(c-1) As-oxidized. 

(c-2) As-oxidized plus stability heat treatment. 

(c) Aluminum content, 3.52 atomic percent; temperature, 
1800' F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
num alloy oxidized f o r  200 hours before and after 
stability heat treatment. Marble's etch. ~ 5 0 0 .  
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(d-1) As-oxidized. 

C-57086 

(a-2) As-oxidized plus stability heat treatment. 

(d) Aluminum content, 9.01 atomic percent; temperature, 
1800' F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
num alloy oxidized for 200 hours before and after 
stability heat treatment. Marble's etch. x500. 
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(e-2) As-oxidized plus stability heat treatment. 

(e) Aluminum content, 0.48 atomic percent; temperature, 
1500' F. 

Fiqae 5. - Continued. Photomicrographs of nickel-alumi- 
nun, alloy oxidized f o r  200 hours before and after 
stability heat treatment. Marble's etch. ~500. 
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( f -1) As-oxidized. 

C-57087 
(f-2) As-oxidized plus s t a b i l i t y  heat  treatment. 

( f )  Aluminum content, 1 . 6 6  atomic percent; temperature, 
15000 F. 

Figure 5. - Continued. PhotomicrograDhs of nickel-ailmi- 
num a l l o y  oxidized f o r  200 hours before  and a f t e r  
s t a b i l i t y  heat treatment. Marble's e tch.  X500. 
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(g-1) As-oxidized. 

c -5 7198 
(g-2) As-oxidized p lus  stability heat treatment. 

(g) Aluminum content, 3.52 atomic percent; temperature, 
1500° F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
nun alloy oxidized for 200 hours before and after 
stability heat treatment. Marble's etch. x500. 
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(h-1) As-oxidized. 

C-57088 
(h-2) As-oxidized p l u s  s t a b i l i t y  heat  treatment. 

(h)  Aluminum content, 9.01 atomic percent; temperature, 
1500' F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
num a l l o y  oxidized f o r  200 hours before  and after 
s t a b i l i t y  heat  treatment. Marble's etch.  ~500. 
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(i-2) As-oxidized plus stability heat treatment. 

(i) Aluminum content, 0.48 atomic percent; temperature, 
1200' F. 

Figure 5. - Continued. Photomicrographs of nickel-alumi- 
num alloy oxidized for 200 hours before and after 
stability heat treatment. Marble's etch. ~500. 

(i-1) As-oxidized. 



(5-1) As-oxidized. 

2-57090 

( j-2) As-oxidized p l u s  stability heat treatment. 

( j) Aluminum content, 1.66 atomic percent; temperature, 
1200' F. 

Figure 5. - Continued. Photomicrographs of nickel-dumi- 
num alloy oxidized for 200 hours before and after 
stability heat treatment. Marble's etch. ~500. 
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C-57200 

I (k-2)  As-oxidized plus stability heat treatment. 

( k )  Alzminum content, 3.52 atomic percent; temperature, 
1200 F. 

Figure 5. - Continued. Photomicrographs of nickel-dmi- 
num alloy oxidized f o r  200 hours before and after 
stability heat treatment. Marble's etch. x500. 
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(1-1) As-oxidized. 

C -5 7089 

(1-2) As-oxidized plus stability heat treatment. 
(I) Aluminum content, 9-01 atomic percent; temperature, 
izooo F. 

Figure 5. - Concluded. Photomicrographs of nickel-allAai- 
nun d l o y  oxidized for 200 hours before and after 
stability heat treatment. Marble's etch. ~500. 



(a) Photomicrographs; magnesium content, 0.27 atomic percent. :.<500. 

Figure 6. - Micrographs of nickel-magnesium alloy oxidized for 200 hours 
at 1800' F before and after stability heat treatment. Marble's etch. 

3% 

(a-1) As-oxidized. 



. . -  

(b-1) As-oxidized. 
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(c-1) As-oxidized. 

(c-2) As-oxidized p l u s  stability heat treatment. 

(c) Photomicrographs; magnesium content, 1.32 atomic percent. 
X500. 

Figure 6. - Continued. Micrographs of nickel-magnesium alloy 
oxidized for 200 hours at 1800' F before and after stability 
heat treatment. Mzrble ' s etch. 
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(a) Electron micrograph; magnesturn content, 1 .52 atomic 
percent; s i l i c o n  monoxide replica.  x10 500. 

Figure E. - Concluded. MicrograDhs of nickel-magnesiun- d l o y  
b oxidized f o r  200 hours a t  1800 F before  and a f te r  s t a b i l i t y  

heat  treatment. Mab le ' s  etch. 
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(a-1) As-oxidized. 

0 

* .  

r 

C-57201 
(a -2)  As-oxidized plus  s t a b i l i t y  heat  treatment. 

( a )  Photomicrographs; s i l i c o n  content, 0.073 atomic percent. 
X500. 

Figure 7. - Micrographs of n icke l -s i l i con  a l l o y  oxidized 
f o r  200 hours a t  1800' F before and a f t e r  s t a b i l i t y  
heat  treatment. Marble s etch. 
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(b-1) As-oxidized. 

(b-2) As-oxidized plus s t a b i l i t y  heat  treatment. 

(b) Photomicrographs; s i l i c o n  content, 0.98 atomic percent. 
X500. 

F i g a e  7. - Continued. Microgravhs of n icke l -s i l i con  a l l o y  D oxidized for  200 hours a t  1800 F before  and a f t e r  s t a b i l -  
i t y  heat  treatment. Mxrble's etch. 
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(c-1) As-oxidized. 

(c-2) As-oxidized p l u s  stability heat treatment. 

(e) F’hotomicrographs; silicon content, 3.00 atomic percent. 
X500. 

Figure 7. - Continued. Micrographs of nickel-silicon alloy 
oxidized for 200 hours at 1800° F before and after stabil- 
ity heat treatment. Marble’s etch. 



(a-1) As-oxidized. 

C-5 7102 
(d-2) As-oxidized plus s t a b i l i t y  heat  treatment. 

(d) Photomicrographs; s i l i c o r  content, 8 .77 atomic percent. 
x500. 

Figure 7. - Continued. Micrographs of nickel-s i l icon a l l o y  
oxidized f o r  200 hours a t  1800' F before  and af ter  stabil-  
i t y  heat  treatment. Marble's etch. 
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(e) Electron micrograph; silicon content, 0.98 atomic percent; 
silicon monoxide replica. X9700. 

Figure 7. - Concluded. Micrographs of nickel-silicon alloy 
oxidized for 200 hours at 1800° F before and after stabil- 
ity heat treatment. Marble's etch. 
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( a-2) As-oxidized plus  s t a b i l i t y  heat  treatment., 

(a)  Titanium content, 0.086 atomic percent. 

Figure 8. - Photomicrographs of nickel-t i tanium alloy 
oxidized f o r  200 hours a t  1800’ F before and after 
s t a b i l i t y  heat  treatment. Marble’s etch. X500. 



(b-1) As-oxidized. 

(b-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(b)  T i t a n i u m  content, 0.98 atomic percent. 

Figure 8. - Continued. Photomicrographs of nickel-t i tanium a l l o y  
oxidized f o r  200 hours a t  1800° F before and a f t e r  s t a b i l i t y  
heat  treatment. Marble's etch. X500. 



. 
(c-1) As-oxidized. 

(e-2) As-oxidized plus s t a b i l i t y  heat treatment. 

( c )  Ti tan ium content, 3.01 atomic percent. 

Figure 8. - Continued. Photomicrographs of nickel-t i tanium a l l o y  
oxidized for 200 hours a t  1800' F before and aFter s t a b i l i t y  
heat  treatment. Marble's etch. X500. 
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(d-1) As-oxidized. 

.e 

C - 74318 
(d-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(a) T i t a n i u m  content, 10.8 atomic percent. 

Figure 8. - Concluded. Photomicgographs of nickel-t i tanium alloy 
oxidized f o r  200 hours at  1800 
heat treatment. Marble's etch. x500. 

F before and a f t e r  s t a b i l i t y  

I 50 
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(a-1) As-oxidized. 

( a-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(a)  C h r o m i u m  content, 0.088 atomic percent. 

Figure 9. - Photomicrographs of nickel-cbromium a l l o y  
oxidized f o r  200 hours a t  1800° F before and a f t e r  
s t a b i l i t y  heat treatment. Marble' s etch. X500. 
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(b-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(b) C h r o m i u m  content, 0.76 atomic percent. 

Figure 9. - Continued. Photomicrographs of nickel-chromium a l l o y  
oxidized f o r  200 hours at  1800° F before and a f t e r  s t a b i l i t y  
heat treatment. Marble's etch. X500. 
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(c-1) As-oxidized. 

53 

' C-74320 
( c-2) As-oxidized plus s t a b i l i t y  heat treatment. 

( c )  C h r o m i u m  content, 3.69 atomic percent. 

Figure 9. - Continued. Photomicrographs of nickel-chromium a l l o y  
oxidized for 200 hours a t  1800' F before and a f t e r  s t a b i l i t y  
heat treatment. Marble's etch, X500. 



(d-1) As-oxidized. 

C-74321 

(a-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(d)  C h r o m i u m  content, 9.13 atomic percent. 

Figure 9. - Concluded. Photomicrographs of n icke l -cbmium a l l o y  
oxidized for 200 hours a t  1800' F before and a f t e r  s t a b i l i t y  
heat treatment. Marble's etch. ~500. 
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(a-1) As-oxidized. 

( a-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(a) Manganese content, 0.075 atomic percent. 

Figure 10. - Photomicrographs of nickel-manganese a l l o y  
oxidized f o r  200 hours at 1800' F before and a f t e r  
s t a b i l i t y  heat treatment. Marble's etch. x500. 
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(b-1) As-oxidized. 

(b-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(b) Manganese content, 0.75 atomic percent. 

Figure 10. - Continued. Photomigrographs of nickel-manganese a l l o y  
oxidized f o r  200 hours a t  1800 
heat treatment. Marble's etch. x500. 

F before and after s t a b i l i t y  
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a \ 

(c-1) As-oxidized. 

* -  

( c-2) As-oxidized plus s t a b i l i t y  heat  treatment. 

( e )  Manganese content, 2.94 a t d c  percent. 

Figure 10. - Continued. Photomicrographs of nickel-manganese a l l o y  
oxidized for 200 hours at 1800° F before and after s t a b i l i t y  
heat treatment. Marble’s etch. X500. 
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(d-1) As-oxidized. 

c-74323 

(d-2) As-oxidized plus s t a b i l i t y  heat treatment. 

(d) Manganese content, 8.93 atomic percent. 

Figure 10. - Concluded. Photomicrographs of nickel-manganese a l l o y  
oxidized far 200 hours at  1800' F before and a f t e r  s t a b i l i t y  
heat treatment. Marble's etch. X500. 
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60 

( a )  Large oxides at  g r a i n  boundaries r e l a t i v e  t o  
matr ix  oxides. 

-External  s c a l e  . - Metal-oxide 
i n t e r f a c e  

Subscale 

( b )  Larger oxides  a t  g r e a t e s t  pene t ra t ions .  

f 1 . 8  : - * . * - . # # - .  

I t  < #* .,\, .. 
I:.. m *:a.. 1.. , . . 1.. . a ' ,  . # *  - : , **:*,: 4 '  i n t e r f a c e  

-.a, . + a  .: -- --- 
Grain boundary 
penet ra t ion  of \- oxide p r e c i p i t a t e s  

( e )  Greater penet ra t ion  rates i n  g r a i n  boundaries than  i n  
matrix. 

Figure 12.  - Schematics of undes i rab le  mic ros t ruc tu ra l  conf igura t ions  t h a t  
can be produced by i n t e r n a l  oxidat ion.  

NASA-Langley, 1965 E-1399 


